Name (print first and last) _____ Per___ Date: 12/19 due 1/10

5.5 Congruence: Triangles

Geometry Regents 2013-2014 Ms. Lomac

SLO: I can write proofs involving congruent triangles. I can either (1) look what I'm trying to prove and make a plan to get there OR (2) prove any facts that I can possibly prove and as I go, see if I can find a path to what I am trying to prove.

(1) \square Given $\overline{AB} \perp \overline{BC}$, $\overline{DC} \perp \overline{BC}$, \overline{DB} bisects $\angle ABC$, \overline{AC} bisects $\angle DCB$, $\overline{EB} \cong \overline{EC}$

Prove: \triangle BEA \cong \triangle CED

Choose which to use SAS≅ ASA≅ SSS≅ AAS≅

(2) \square Given $\overline{BF} \perp \overline{AC}$, $\overline{CE} \perp \overline{AB}$, $\overline{AE} \cong \overline{AF}$ Prove: $\triangle ACE \cong \triangle ABF$

I<u>deas</u> Reflexive ⊥ gives me ___

5.5 & 5.6

(3) \square Given $\overline{XJ}\cong \overline{YK}$, $\overline{PX}\cong \overline{PY}$, $\angle ZXJ\cong \angle ZYK$ Prove: $\overline{JY}\cong \overline{KX}$

Ideas
Reflexive
Segment addition
Linear pair
sub of = values
≅△→≅ parts
inverse opp.

(4) \square Given $\overline{JK} \cong \overline{JL}$, $\overline{JK} \parallel \overline{XY}$

Prove: $\overline{XY} \cong \overline{XL}$

Ideas
Sub of = values
Isos. △ thrm
Alt int, corresp,
alt ext, etc. . .

5.5 & 5.6

(5) \square Given: $\angle 1 \cong \angle 2$, $\angle 3 \cong \angle 4$

Prove: $\overline{AC} \cong \overline{BD}$

Ideas
Reflexive
angle addition
Linear pair
sums of =∠s are=
≅△→≅ parts
inverse opp.
Sub of = values

(6) \square Given: $\angle 1 \cong \angle 2$, $\angle 3 \cong \angle 4$, $\overline{AB} \cong \overline{AC}$

Prove: $\angle 5 \cong \angle 6$ by first proving $\triangle ABD \cong \triangle ACD$ and then $\triangle AXD \cong \triangle AYD$

<u>Ideas</u> Reflexive angle addition ≘△ →≅ parts	X S
	1 D 4 2 P

Choose which to use SAS≅ ASA≅ SSS≅ AAS≊ HL≅ (7) \square CHALLENGE Given: \overline{RX} is the perpendicular bisector of \overline{AB} , \overline{RY} is the perpendicular bisector of \overline{AC} , $\overline{YR} \cong \overline{XR}$. Prove: $\overline{RA} \cong \overline{RB} \cong \overline{RC}$ by first proving that $\triangle \mathsf{RAX} \cong \triangle \mathsf{RAY}$

(8) \square Given: $\overline{AB} \cong \overline{AC}$, $\overline{RB} \cong \overline{RC}$

Prove: $\overline{SB} \cong \overline{SC}$

Choose which to use SAS= ASA= SSS= AAS= HL=

(9) \square Given: Square ABCS \cong Square EFGS, RAB, REF

Prove: $\triangle ASR \cong \triangle ESR$

Ideas
Square qualities
reflexive
Sub of = values

5.5 & 5.6

(10) \square Given: $\overline{JK} \cong \overline{JL}$, $\overline{JX} \cong \overline{JY}$

Prove: $\overline{KX} \cong \overline{LY}$

(11) \square Given: $\overline{AD} \perp \overline{DR}$, $\overline{AB} \perp \overline{BR}$, $\overline{AD} \cong \overline{AB}$

Prove: $\angle DCR \cong \angle BCR$

(12) \square CHALLENGE Given: $\overline{AR} \cong \overline{AS}$, $\overline{BR} \cong \overline{CS}$, $\overline{RX} \perp \overline{AB}$, $\overline{SY} \perp \overline{AC}$

Prove: $\overline{BX} \cong \overline{CY}$

(13) \square CHALLENGE Given: $\overline{AX} \cong \overline{BX}$, \angle AMB = \angle AYZ = 90°

Prove: $\overline{NY} \cong \overline{NM}$

(14) \square CHALLENGE If $\overline{BE} \cong \overline{CE}$, $\overline{DC} \perp \overline{AB}$, $\overline{BE} \perp \overline{AC}$, then $\overline{AE} \cong \overline{RE}$.

