Name (print first and last) _____ Per___ Date: 12/19 due 1/10 5.5 Congruence: Triangles Geometry Regents 2013-2014 Ms. Lomac SLO: I can write proofs involving congruent triangles. I can either (1) look what I'm trying to prove and make a plan to get there OR (2) prove any facts that I can possibly prove and as I go, see if I can find a path to what I am trying to prove. (1) \square Given $\overline{AB} \perp \overline{BC}$, $\overline{DC} \perp \overline{BC}$, \overline{DB} bisects $\angle ABC$, \overline{AC} bisects $\angle DCB$, $\overline{EB} \cong \overline{EC}$ Prove: \triangle BEA \cong \triangle CED Choose which to use SAS≅ ASA≅ SSS≅ AAS≅ (2) \square Given $\overline{BF} \perp \overline{AC}$, $\overline{CE} \perp \overline{AB}$, $\overline{AE} \cong \overline{AF}$ Prove: $\triangle ACE \cong \triangle ABF$ I<u>deas</u> Reflexive ⊥ gives me ___ 5.5 & 5.6 (3) \square Given $\overline{XJ}\cong \overline{YK}$, $\overline{PX}\cong \overline{PY}$, $\angle ZXJ\cong \angle ZYK$ Prove: $\overline{JY}\cong \overline{KX}$ Ideas Reflexive Segment addition Linear pair sub of = values ≅△→≅ parts inverse opp. (4) \square Given $\overline{JK} \cong \overline{JL}$, $\overline{JK} \parallel \overline{XY}$ Prove: $\overline{XY} \cong \overline{XL}$ Ideas Sub of = values Isos. △ thrm Alt int, corresp, alt ext, etc. . . 5.5 & 5.6 (5) \square Given: $\angle 1 \cong \angle 2$, $\angle 3 \cong \angle 4$ Prove: $\overline{AC} \cong \overline{BD}$ Ideas Reflexive angle addition Linear pair sums of =∠s are= ≅△→≅ parts inverse opp. Sub of = values (6) \square Given: $\angle 1 \cong \angle 2$, $\angle 3 \cong \angle 4$, $\overline{AB} \cong \overline{AC}$ Prove: $\angle 5 \cong \angle 6$ by first proving $\triangle ABD \cong \triangle ACD$ and then $\triangle AXD \cong \triangle AYD$ | <u>Ideas</u>
Reflexive
angle addition
≘△ →≅ parts | X S | |--|-----------| | | 1 D 4 2 P | Choose which to use SAS≅ ASA≅ SSS≅ AAS≊ HL≅ (7) \square CHALLENGE Given: \overline{RX} is the perpendicular bisector of \overline{AB} , \overline{RY} is the perpendicular bisector of \overline{AC} , $\overline{YR} \cong \overline{XR}$. Prove: $\overline{RA} \cong \overline{RB} \cong \overline{RC}$ by first proving that $\triangle \mathsf{RAX} \cong \triangle \mathsf{RAY}$ (8) \square Given: $\overline{AB} \cong \overline{AC}$, $\overline{RB} \cong \overline{RC}$ Prove: $\overline{SB} \cong \overline{SC}$ Choose which to use SAS= ASA= SSS= AAS= HL= (9) \square Given: Square ABCS \cong Square EFGS, RAB, REF Prove: $\triangle ASR \cong \triangle ESR$ Ideas Square qualities reflexive Sub of = values 5.5 & 5.6 (10) \square Given: $\overline{JK} \cong \overline{JL}$, $\overline{JX} \cong \overline{JY}$ Prove: $\overline{KX} \cong \overline{LY}$ (11) \square Given: $\overline{AD} \perp \overline{DR}$, $\overline{AB} \perp \overline{BR}$, $\overline{AD} \cong \overline{AB}$ Prove: $\angle DCR \cong \angle BCR$ (12) \square CHALLENGE Given: $\overline{AR} \cong \overline{AS}$, $\overline{BR} \cong \overline{CS}$, $\overline{RX} \perp \overline{AB}$, $\overline{SY} \perp \overline{AC}$ Prove: $\overline{BX} \cong \overline{CY}$ (13) \square CHALLENGE Given: $\overline{AX} \cong \overline{BX}$, \angle AMB = \angle AYZ = 90° Prove: $\overline{NY} \cong \overline{NM}$ (14) \square CHALLENGE If $\overline{BE} \cong \overline{CE}$, $\overline{DC} \perp \overline{AB}$, $\overline{BE} \perp \overline{AC}$, then $\overline{AE} \cong \overline{RE}$.